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Abstract: Information aspects of copying quantum states via
stimulated emission of an optical quantum amplifier are consid-
ered. It is shown that the measurable information very rapidly
decreases after amplification of a single photon up to a level of
several photons. Spontaneous emission, which leads to such be-
havior, is also discussed.
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Experimental setup for retrieving information from a single pho-
ton. BS are the beamsplitters, PBS are the polarizing beamsplit-
ters, WP is a waveplate to switch between vertical/horizontal
and±45◦ polarizations, and 1–4 are the photodetectors. Part I
of the experimental setup measures vertical/horizontal polariza-
tions, whereas part II –±45◦ polarizations
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1. Introduction

This paper was initiated thanks to the various discussions
of the no-cloning principle within the laser physics com-
munity. Despite the fact that this principle, which reads
asa priory unknown quantum state cannot be cloned in-
dependently of its nature [1], is well understood within
the quantum information community and can be formally
proofed just in two lines, many people from the field of
laser physics and quantum optics still wonder whether a
quantum amplifier can break this principle or not. To be
more specific, let us consider polarization of a photon as an
information carrier and, therefore, the parameter that can
be cloned. It is widely believed that a quantum amplifier
produces due to the stimulated emissionthe samephotons
as the initial one. From this point of view if one sends a
photon at the input of a quantum amplifier, in the output
we will have several exact copies of the incident photon
and this obviously violates the no-cloning principle.

This paradox can be easily solved if one takes into ac-
count unavoidable presence of spontaneous emission dur-
ing the process of amplification of a photon, which read-
ily leads to imperfections in the “cloning” process. Along
with the generated photons with correct polarization, i.e.
polarization of the initial photon, there always exist addi-
tional photons with incorrect polarization. Fidelity of such
non-perfect cloning, defined as a relative number of output
photons with correct polarization, must always be lower
than unit. However, under certain assumption about the
quantum amplifier – for instance, assumption about sym-
metry under unitary transformations of the initial photon
(or system of several photons) – fidelity of the amplified
signal [2,3] is equal to the fidelity of optimal cloning [4–
6].

For further analysis of information properties of a
quantum amplifier one needs to define its model. With-
out any loss of generality, we will model quantum ampli-
fier as an ensemble ofΛ-systems with two non-degenerate
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ground states|g1〉 and|g2〉 and an excited state|e〉. Tran-
sitions between ground states and the excited one are con-
nected with two electromagnetic polarization modesa1

anda2, which define the Hilbert space of the initial photon.
Hamiltonian of interaction between initial photon (or,

generally speaking, electromagnetic field) with the quan-
tum amplifier formed ofK Λ-systems has the following
form:

H = γ

(
a+
1

K∑
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∣∣gk
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〉〈
ek
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2

K∑
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〉〈
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∣∣
)

+ h.c. , (1)

whereγ is the coupling constant of aΛ-system with the
electromagnetic field. The physical meaning of this inter-
action Hamiltonian is rather clear: a new photon with the
given polarizationa+

i is created if aΛ-system switches
from the excited state|e〉 on to the ground state|gi〉.

The general expression for the fidelityF (N → M) of
amplification ofN photons toM > N was derived in [2,
3] and reads as

F (N → M) =
MN + M + N

M(N + 2)
. (2)

In the limiting case of amplification of a single photon
(N = 1) to infinite number of output photonsM = ∞,
i.e., up to a classical signal, this expression transforms to
F (1 →∞) = 2/3. The fact thatF (1 →∞) is higher than
1/2 means that the majority of photons generated by the
quantum amplifier have statistically correct polarization,
which leaves a faint hope that extracting information about
polarization of the initial photon would be possible. In fact,
it is still unclear what does the value of fidelity more than
1/2 mean in sense of extracting information from it. In this
paper, we will clarify this and other questions related to the
information, which one can actually retrieve from a single
photon with the help of a quantum amplifier.

The paper is organized as follows. We start in Sec. 2
with consideration of the no-cloning principle and related
limitation for the possible copying of information. Then, in
Sec. 3 we consider measurable information after quantum
amplification in detail and, finally, conclusions are given
in Sec. 4.

2. No-cloning and no-copying principles

The formal proof of the no-cloning principle can be out-
lined as follows. Let us consider cloning of two arbitrary
states|φ〉 and|ψ〉. The result of the cloning can be repre-
sented as a unitary transformation that produces clones of
these states from an initial blank state|0〉:
|φ〉 |0〉 → |φ〉 |φ〉 , (3)

|ψ〉 |0〉 → |ψ〉 |ψ〉 .

Due to the unitarity of the cloning transformation the inner
product of the initial joint systemA+B must be preserved:

〈φ |ψ 〉 = 〈φ |ψ 〉 〈φ |ψ 〉 , (4)

which can be fulfilled in only two cases:〈φ |ψ 〉 = 0
and 〈φ |ψ 〉 = 1, which means cloning of the state from
an orthogonal set. As a result, we can see that the per-
fect cloning is impossible if the initial state belongs to the
nonorthogonal set of states belonging to the same Hilbert
space.

This statement can be enforced by the no-copying prin-
ciple [7], which tells that the perfect clone cannot be pro-
duced and even does not exist. This means that for two
separate systemsA andB the results of an arbitrary mea-
surement of one of the systems cannot be always equal
to the result of the same measurement made with another
system.

To prove this statement, let us consider the divergency
operator

ĈAB =
∫

(|α〉A 〈α|A⊗1̂B − 1̂A⊗|α〉B 〈α|B)2d2Vα , (5)

wheredVα is the volume differential on the Bloch sphere
for the Hilbert space of the bipartite systemA andB. It
has been shown that this divergency operator equals to the
following one [7]:

ĈAB = 2
[
1
3

(‖Ψ+〉〉〈〈Ψ+‖+ ‖Φ−〉〉〈〈Φ−‖ + (6)

+‖Φ+〉〉〈〈Φ+‖) + ‖Ψ−〉〉〈〈Ψ−‖
]

,

where||Ψ 〉〉± and ||Φ 〉〉± are the Bell states. Therefore,
the average divergence of all indicative projectors, i.e.,
quantum variables with the possible values 0 and 1 of the
bipartite systemA andB, has ever nonzero value exceed-
ing 2/3.

It is worth to note here that despite the fact that the per-
fect copying does not exist, the perfect anticopying exists
nevertheless. To proof this, let us consider the anticopying
operator

ÂAB =
∫

(|α〉A 〈α|A⊗1̂B − 1̂A⊗|α̃〉B 〈α̃|B)2d2Vα , (7)

which is similar to the copying operator (5), but the oppo-
site states̃α of theB-system are compared with the states
α of the A-system. Then, one can easily find that if the
bipartite state is antisymmetric,

ÂAB |Ψ〉− = 0 , (8)

which means that the antisymmetric state provides perfect
anti-correlations of the subsystems. This is a well-known
fact in nuclear decay experiment, for instance: if the initial
system has zero spin and resulting particles have spin of
1/2, then they are contrarily oriented.
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Figure 1 Experimental setup for retrieving information from a
single photon. BS are the beamsplitters, PBS are the polariz-
ing beamsplitters, WP is a waveplate to switch between ver-
tical/horizontal and±45◦ polarizations, and 1–4 are the pho-
todetectors. Part I of the experimental setup measures verti-
cal/horizontal polarizations, whereas part II –±45◦ polarizations

3. Measurable information after quantum
amplification

Keeping in mind equivalence of perfect copying to an
equality of mutual information to unit, let us now answer
the question of how much information can be extracted, or
measured, with the help of a quantum amplifier.

The most natural quantitative measure for measurable
information is the classical Shannon information func-
tional

IAB ≡ S[P (x)]− S[P (x|y)] , (9)

where S[P (x)] is the standard Shannon entropy
S[P (x)] = −∑

P (x) log2 P (x), P (x) and P (x|y)
are the unconditional (a priori) and conditional (a posteri-
ori) probability distributions. Due to the fact thata priori
entropy depends only on a set of possible states of the
initial photon and can be treated as fixed, the measurable
information determines only by the conditional entropy,
or a given method of the measuring procedure.

For simplicity, we will consider a case of amplification
of one initial photon toM output photons when a polar-
ization of the initial photon belongs to a fixed set of polar-
izations, which can be taken, for example, the same as for
the BB84 quantum key distribution protocol (vertical, hor-
izontal, and±45◦ linear polarizations). Quantum amplifi-
cation in this case can be considered as a possible strategy
of eavesdropping. For this case expression (2) transforms
to

F (1 → M) =
2
3

+
1

3M
. (10)

Experimental setup for retrieving classical information
is similar to that one used for the intercept-resend strategy
of eavesdropping and is shown in Fig. 1.

This experimental setup acts as follows. For measur-
ing only vertical/horizontal polarization part I of this setup
is to be used only. If one sends single photons, one by
one without amplification, the photodetector 1 will always

click and the photodetector 2 will never click (of course,
under assumption of their perfect sensitivity and zero dark
count rate). Thus, we can perfectly measure the polariza-
tion of a single photon, i.e., the measurable information
reaches its maximal value, which for the given orthogonal
set of states is equal to1 bit.

However, if polarization of the initial photon belongs
to a nonorthogonal set, and can be with equal probability
either verticlal/horizontal or±45◦ polarization, we should
use both parts of the experimental setup. With equal prob-
abilities, the initial photon will pass through the beamsplit-
ter to the part I or will be reflected to the part II, and ac-
cessible informationIaccess in this case is equal to0.5 bit
because in one half of the cases we will perfectly know
polarizations and in another half of the cases we will have
no information about the polarization at all.

Let us now analyze the results of using a quantum am-
plifier. After amplification of a single photon toM output
photons the probability of obtaining each photon in the
same polarization mode as that of initial photon is equal
to F (1 → M) (see Eq. (10)), and in the orthogonal po-
larization mode –Q(1 → M) = 1 − F (1 → M). The
probability of having each output photon in the additional
unbiased modes is equal to1/2.

Therefore, we havea posteriori probability distribu-
tion P (x|y) of obtaining output photon inx polarization
mode, whereas the initial photon was iny mode:

P (x|y) =




F (M) Q(M) 1/2 1/2
Q(M) F (M) 1/2 1/2
1/2 1/2 F (M) Q(M)
1/2 1/2 Q(M) F (M)


 , (11)

where x, y = 1, 4 denotes consequently vertical, hori-
zontal,+45◦, and−45◦ polarization modes, andF (M),
Q(M) stay forF (1 → M) andQ(1 → M), respectively.

The corresponding measurable information (9) is
shown in Fig. 2, which clearly indicates that the measur-
able informationI very quickly decreases from its maxi-
mal value of0.5 bit, corresponding to the case of no am-
plification, to its lowest value of5/6 − ln 3/ ln 4 ' 0.04
bit, corresponding to the case of infinite number of out-
put photons, i.e., entirely classical signal. This means that
the quantum amplification results in dramatic decrease of
measurable information and the best way to retrieve in-
formation from a single photon is to measure it without
amplification.

This result can be easily understood with the presence
of spontaneous emission during the amplification, which
acts as a source of additional noise. Taking it into account
does not require any additional formalism, because it is
just an inalienable part of the stimulated emission. This
leads to the fact that along with the “right” photons (i.e.,
with the same polarization as that one of the initial photon)
produced in the process of stimulated emission1 there al-

1 Note that in the process of stimulated emission the generated
photons are always the “right” photons, i.e., the photons with the
same polarization as that one of the initial photon.
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Figure 2 The measurable informationI versus the number of
output photonsM after amplification of a single photon

ways be produced some “wrong” photons due to the spon-
taneous emission. In other words, spontaneous emission
here reflects the fact that the amplification fidelity is not
equal to the unit, or describe the immanent quantum fluc-
tuations present in the process of amplification.

It is worth to note here that in the simplest case of gen-
eration of one photon by stimulated emission by only one
atom, this atom cannot interact directly with theexactstate
|ψ〉 of the photon, but with the state that already includes
its internal quantum uncertainty. This means that if the in-
put photon has another state|φ〉, the result of interaction
of the atom with this photon will be the same as with the
previous photon with the probability| 〈ψ |φ 〉 |2.

As a simple model, which increases the noise during
amplification, let us consider a consecutive chain of
Λ-systems, each of them produces only one additional
photon stimulated by the randomly chosen photon at their
input. As a result, we will have two photons after the first
Λ-system, three after the second one, and so on. Each
Λ-system in the sequence will generate due to the quantum
uncertainty of the sates of the photons an additional quan-
tum noise. This leads in additional errors with respect to

the initial photon. These errors will be amplified along the
chain with the signal amplification and, as result of such
amplification, we will have essential part of “wrong” pho-
tons at the output of the amplifier.

Finally, let us clarify a question if the quantum amplifi-
cation can be considered as a possible eavesdropping strat-
egy. The answer is yes, it can be used as a possible eaves-
dropping strategy, but as a quite poor one: even far-from-
the-optimal intercept – resend strategy extracts accessible
information, which is the upper bound for the amount of
the measurable information after amplification.

4. Conclusions

In conclusion, we studied the information aspects of the
light amplification with its possible use as an eavesdrop-
ping strategy in quantum cryptography. We clarified the
information picture of the amplification process and de-
rived its complete information characteristics. It is shown
that the measurable information very rapidly decreases af-
ter amplification of a single photon up to a level of sev-
eral photons due to the inevitable presence of spontaneous
emission, which leads to such behavior.
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